Mixed finite element discretization and Newton iteration for a reactive contaminant transport model with nonequilibrium sorption: convergence analysis and error estimates

نویسندگان

  • Florin A. Radu
  • Iuliu Sorin Pop
چکیده

We present a numerical scheme for reactive contaminant transport with nonequilibrium sorption in porous media. The mass conservative scheme is based on Euler implicit, mixed finite elements, and Newton method. We consider the case of a Freundlich-type sorption. In this case, the sorption isotherm is not Lipschitz but just Hölder continuous. To deal with this, we perform a regularization step. The convergence of the scheme is analyzed. An explicit order of convergence depending only on the regularization parameter, the time step, and the mesh size is derived. We give also a sufficient condition for the quadratic convergence of the Newton method. Finally, relevant numerical results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Analysis of an Euler Implicit - Mixed Finite Element Scheme for Reactive Solute Transport in Porous Media

Abstract. In this paper we analyze an Euler implicit-mixed finite element scheme for a porous media solute transport model. The transporting flux is not assumed given, but obtained by solving numerically the Richards equation, a model for sub-surface fluid flow. We prove the convergence of the scheme by estimating the error in terms of the discretization parameters. In doing so we take into acc...

متن کامل

Postprocessing Mixed Finite Element Methods For Solving Cahn-Hilliard Equation: Methods and Error Analysis

A postprocessing technique for mixed finite element methods for the Cahn-Hilliard equation is developed and analyzed. Once the mixed finite element approximations have been computed at a fixed time on the coarser mesh, the approximations are postprocessed by solving two decoupled Poisson equations in an enriched finite element space (either on a finer grid or a higher-order space) for which man...

متن کامل

Multiple solutions of a nonlinear reactive transport model using least square pseudo-spectral collocation method

The recognition and the calculation of all branches of solutions of the nonlinear boundary value problems is difficult obviously. The complexity of this issue goes back to the being nonlinearity of the problem. Regarding this matter, this paper considers steady state reactive transport model which does not have exact closed-form solution and discovers existence of dual or triple solutions in so...

متن کامل

Adaptive finite element analysis of nonlinear problems: balancing of discretization and iteration errors

This article continues prior work of the authors on the combined a posteriori analysis for the discretization and iteration errors in the finite element approximation of linear elliptic problems to the nonlinear case. The underlying theoretical framework is again that of the Dual Weighted Residual (DWR) method for goal-oriented error control. The accuracy in the algebraic solution process can b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011